
# **Topics Covered**

- 1. Carbofunctionalizations with Pd<sup>0</sup>
- 2. Difunctionalizations with Pd<sup>II</sup>
  - Bäckvall Difunctionalizations
     Main Reference: Bäckvall, J. E. Metal-Catalyzed Cross-Coupling Reactions and More, Wiley-VCH: Weinheim, 2014; Ch. 11
- 3. Aminofunctionalization
  - a. Booker-Milburn Diamination and Carboamination with PdII
  - b. Shi Diamination with Pd<sup>0</sup>
  - c. Shi Diamination with Cul
- 4. Borylations
  - a. Morken Diborylation with Pt<sup>0</sup>
  - b. Morken Diborylation with Ni<sup>0</sup>
- 5. Acylfunctionalizations with Ni<sup>o</sup>

# **Topics Not Covered**

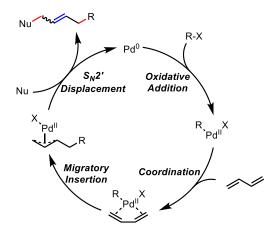
- Halogenations
- · Osmium-catalyzed dihydroxylations
- · Cycloadditions
- Polymerizations
- · Hydrofunctionalizations
- Simple conjugated dienes like isoprene and 1,3-butadiene are readily available and more complex dienes can be prepared from common transformations: cross-coupling reactions, olefin synthesis, olefin metathesis
- Products contain an olefin which can be further functionalized to make a molecule of high functionality



- The coordination of a metal catalyst to dienes occurs through  $\sigma\text{-donation}$  and  $\pi\text{-back}$  donation
- Stronger  $\sigma$ -donation to cationic or higher oxidation state metal complex activates olefin to nucleophilic attack

#### **General Mechanism**

$$\begin{array}{c|c}
\underline{\text{[M]}} & \underline{\text{Nu}} & \underline{\text{Nu}} & \underline{\text{Nu'}} & 1,2 \text{ or } 1,4 \text{-product}
\end{array}$$


- After attack by the first nucleophile, a stable π-allyl metal complex is formed
- A second nucleophile addition results in allylic substitution and elimination of the metal catalyst



Challenges: Regioselectivity and Stereoselectivity

# 1. Carbofunctionalizations with Pd<sup>0</sup>

General Mechanism of Pd<sup>0</sup>-catalyzed reactions to give 1,4-product



- Addition of the first nucleophile shares the same mechanism as the Heck reaction, but the extended conjugation gives a Pd-π-allyl complex
- Addition of the second nucleophile can occur on either end of the Pd- $\pi$ -allyl species, but most examples give 1,4-product

### Carboamination

## Intermolecular

Heck. R. F. J. Org. Chem. 1978, 43, 5018-5020.

 Most substrates primarily yielded the Heck coupling product hydrocarbon dienes gave moderate yield of difunctionalized product

Dieck, H. A. J. Org. Chem. 1983, 48, 807-809.

### <u>Intramolecular</u>

## Cyclization during carbopalladation

Grigg, R. Tetahedron Lett. 1989, 30, 1139-1142.

## Cyclization during amination

Helmchen, G. Tetrahedron Lett. 1999, 40, 3867-3868.

e.e. ranged from 59-80% under optimized conditions

## Carbooxygenation

Trost, B.M. J. Am. Chem. Soc. 1988, 110, 8239-8241.

Yeh, M. P. Organometallics, 2005, 24, 5909-5915.

Linear dienes gave 1,2-product – hydroxyl-directed regioselectivity

Larock, R. C. J. Org. Chem. 1990, 55, 3447-3450.

- Linear and cyclic diene-containing hydrocarbons, and hydroxylcontaining isoprene included in substrate scope
- · Mixtures of products with asymmetrical dienes

Pd(OAc)<sub>2</sub> (10 mol %)

X = I, Br Larock, R. C. J. Org. Chem. 2000, 65, 1525-1529.

- 1-substituted acyclic and cyclic dienes used
- 2-substituted dienes gave mixtures of regioisomers

### Arylalkylation

Grigg, R. Tetrahedron Lett. 1989, 30, 1139-1142.

R = Me, Et, or Bn

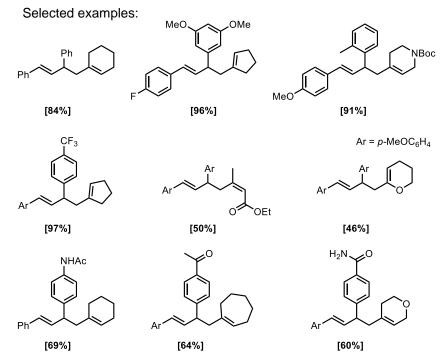
[51-90%] *74-94%* ee

$$R = \begin{cases} O_2N \\ O_2N \\ O_2N \\ O_3 \end{cases}$$

$$R = \begin{cases} CF_3 \\ CF_3 \end{cases}$$

Gong, L. J. Am. Chem. Soc. 2015, 137, 13476-13479.

- Bulky Ar' = lower yields, but higher e.e.
- Ortho-methyl groups on either Ar or Ar' results in diminished regioselectivity


## Vinylarylation

## 1,2-Regioselectivity

$$Ar + R + Ar'B(OH)_{2} + Ar'B(OH)_{$$

Ar = Ph, p-MeOC<sub>6</sub>H<sub>4</sub>, p-FC<sub>6</sub>H<sub>4</sub>

Sigman, M. S. J. Am. Chem. Soc. 2011, 133, 5784-5787.



- Vinyl triflates were used rather than halides to generate a more electrophilic palladium species, resulting in faster migratory insertion to the diene than transmetallation of the aryl boronic acid
- Use of phosphine ligands promoted Suzuki, Heck, and hydroarylation product formation

# <u>1,4-Regioselectivity</u> - affords skipped dienes

Sigman, M. S. J. Am. Chem. Soc. 2013, 135, 4167-4170.

### Selected examples:

- Boronic acids with heteroaryl groups containing Lewis basic heteroatoms give little to no product
- 1,4-regioselectivity is thought to arise from steric effects

## **Diarylation**

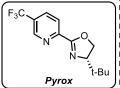
Sigman, M. S. Org. Lett. 2014, 16, 4666-4669.

- Use of phosphine, NHC, and amine ligands gave Suzuki and Heck coupling products
- Use of chiral diene ligands gave maximum of 83% e.e., but yield of 10% by GC
- Electron-poor and -rich coupling partners, as well ortho-, meta-, and para- substituents give comparable yields
- · Bromo- and iodoaryl diazonium salts tolerated

# Divinylation

Pd<sub>2</sub>dba<sub>3</sub>-CHCl<sub>3</sub> (3 mol %)
Na<sub>2</sub>CO<sub>3</sub> (1.7 eq)
DMF, rt, 16 h

(7 eq)
(1.5 eq)


Na<sub>2</sub>CO<sub>3</sub> (1.7 eq)
R

4,1-addition
R

1,2-addition

Sigman, M. S. Chem. Sci. 2015, 6, 1355-1361.

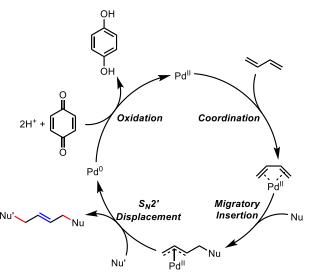
- Ligand-less reaction gives mostly (E)-1,4 addition product (ratios <3:1) but limited substrate scope
- Yields of mixture of isomers ranged from 50% to 89%
- Use of pyrox ligand gave higher selectivities of (E)-1,4 addition product (<2:1) for more challenging substrate</li>



## <u>Carbosilylation</u>

Tsuji, Y. J. Am. Chem. Soc. 1993, 115, 10414-10415.

- Decarbonylative coupling of acyl chloride and silyl group
- · Acyl bromides, aryl iodides, aryl triflates failed to give desired product
- 4-Bromobenzoyl chloride coupled only at acyl position
- Complete decarbonylation of acyl chlorides occurred for most substrates – bulky substrates did not undergo any decarbonylation:


· Use of phosphine and phosphite ligands reduced yields

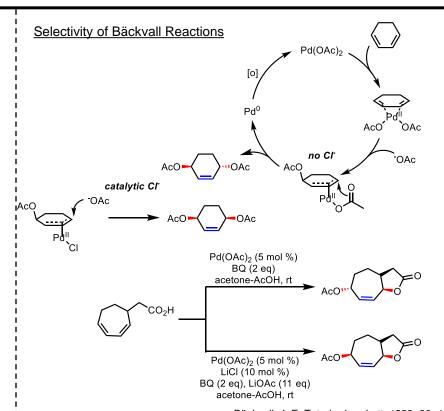
Tsuji, Y. J. Am. Chem. Soc. 1995, 117, 9814-9821.

- · Yields lower than acyl chlorides
- Selectivity of (E) and (Z)-products low
  - When 2-phenylbutadiene or 2-methyl butadiene used, low selectivity
    - Mixture of (E) and (Z)-1,4 and 4,1 products

# 2. Bäckvall Difunctionalization with PdII

General Mechanism of Pd<sup>II</sup>-catalyzed reactions to give 1,4-product




### **Bäckvall 1,4-Difunctionalizations**

**Bis-acyloxylation** 



Bäckvall, J. E. J. Am. Chem. Soc. 1981, 103, 4959-4960.

- Cis- or trans- product dependent on the concentration of Cl-
- Cl<sup>-</sup> is a stronger ligand than -OAc
- 1,3-Cyclohexadiene used a model system, substrate scope includes cyclic and acyclic 1,3-diene-containing hydrocarbons

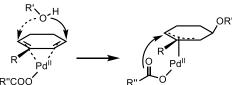


Bäckvall, J. E. Tetrahedron Lett. 1989, 30, 137-140.

## <u>Haloacyloxylation</u>

Bäckvall, J. E. J. Am. Chem. Soc. 1985, 107, 3676-3686.

## **Dialkoxylation**


Bäckvall, J. E. Tetrahedron, 1998, 54, 5375-5384.

- Reaction with strong acid prevents acetate from coordinating to Pd no acetoxy transfer onto substrate
- Solvents: MeOH, EtOH, tBuOH, BnOH

# **Acyloxyalkoxylation**

Bäckvall, J. E. Tetahedron Lett. 1998, 39, 1223-1226.

 Challenge here is to avoid dialkoxylation, diacyloxylation products, and regioisomers



## **Aminofunctionalization**

Bäckvall, J. E. J. Am. Chem. Soc. 1990, 112, 3683-3685.

R groups on amine decrease nucleophilicity

# C-C bond formation

<u>Alkynes</u>

Bäckvall, J. E. Tetrahedron Lett. 1994, 35, 5713-5716.

· Chloropalladation of alkyne, followed by vinyl palladation across diene

### Allylsilane

Bäckvall, J. E. J. Am. Chem. Soc. 1995, 117, 560-561.

• Sakurai-like anti-attack of allylsilane to give Pd-π-allyl complex

### Stabilized Carbanions

[50%] mixture of acetate and eliminated product

Bäckvall, J. E. Tetrahedron Lett. 1997, 38, 3603-3606.

 Generally challenging as Bäckvall reactions are run in acetic acid – protic solvent

# **Diarylation**

 $R = m_1 m_2 (MeO)_2 C_6 H_3 [55\%], p_F C_6 H_4 [59\%]$ 

Sigman, M. S. Angew. Chem. Int. Ed. 2009, 48, 3146-2149.

- Reaction optimized for terminal olefin diarylation 2 examples of dienes
- Cationic catalyst gave preference for diarylated product over Heck and hydroarylated products

Booker-Milburn, K. I. Angew. Chem. Int. Ed. 2015, 54, 6496-6500.

Addition of oxidant turned catalyst over but oxidized the 1,2-addition product

## 3. Aminofunctionalization

#### **Booker-Milburn**

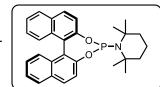
### Diamination

Booker-Milburn, K. I. J. Am. Chem. Soc. 2005, 127, 7308-7309.

- Good yields with isoprene, 2,3-dimethylbutadiene (81-82%)
- Excellent yields with terminal styrenes (p-C<sub>6</sub>H<sub>4</sub>OMe, p-C<sub>6</sub>H<sub>4</sub>CF<sub>3</sub>, Ph)

#### Carboamination

Booker-Milburn, K. I. J. Am. Chem. Soc. 2008, 130, 10066-10067.


- Urea-directed C-H insertion
- Suggested TsOH generation of electrophilic (TsO)<sub>n</sub>Pd species as active catalyst
- Most substrates in scope used vinylogous Michael acceptor as diene

#### Shi

### Palladium-catalyzed Diamination

Shi, Y. J. Am. Chem. Soc. 2007, 129, 11688-11689.

- Use of phosphoramidite ligand gave high enantioselectivities
- Diamination of terminal conjugated, (E)- and (Z)diene and trienes on internal olefin
- Tertiary amines, thiophenes, ester, ethers were tolerated



NHC-Pd complexes have been used with similar substrate scope and comparable yields

Shi, Y. J. Org. Chem. 2007, 72, 7038-7041.

Shi, Y. J. Am. Chem. Soc. 2010, 132, 3523-3532

Proposed mechanism based on NMR studies

90-93% ee Shi, Y. Org. Lett. 2013, 15, 796-799.

- Used thiadiaziridine as nitrogen source
- · Phosphoramidite ligand used
- · Improved yields, enantioselectivity under similar reaction conditions

### Copper-Catalyzed Diamination

$$R" \xrightarrow{R} + \underbrace{N-N}_{N-N} \xrightarrow{CuCl (10 \text{ mol } \%)}_{P(OPh)_3 (10 \text{ mol } \%)} R" \xrightarrow{R'}_{R'} R$$

$$(1.5 \text{ eq}) \qquad [50-89\%]$$

Shi, Y. Org. Lett. 2007, 9, 2589-2591.

- · Diamination of terminal conjugated dienes and trienes on terminal olefin
- Substrate scope does not include many functional groups on dienes (nitro, vinyl ether, ester tolerated)

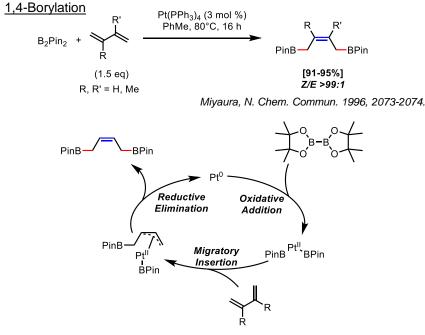
Labelling studies suggests radical mechanism

Shi, Y. J. Am. Chem. Soc. 2010, 132, 11009-11011.

- Diastereoselective no isomerization when deuterium-labelled diene difunctionalized implies 2 electron mechanism
- Diamination of internal olefin is a result of ligandless catalyst

| catalyst                         | a:b   |
|----------------------------------|-------|
| CuCl-P(OPh) <sub>3</sub> (1:1.2) | 34:66 |
| $CuCl-P(OPh)_3$ (1:2)            | 42:58 |
| CuCl-PCy <sub>3</sub> (1:1.2)    | 78:22 |
| CuCl-PCy <sub>3</sub> (1:1.5)    | 97:3  |
| CuCl                             | 17:83 |
| CuBr                             | 1:99  |

 Mechanistic studies show internal diamination with copper goes through Cu<sup>III</sup> species in a 2 electron process that resembles Pd<sup>0</sup> catalytic cycle


Shi, Y. J. Am. Chem. Soc. 2011, 133, 20890-20900.

· Cleavage of the imidazolidinone product

Shi, Y. J. Am. Chem. Soc. 2007, 129, 11688-11689.

# 4. Borylation

# **Platinum-Catalyzed Borylation**



Reductive elimination faster than syn-anti isomerization

$$PhMe_{2}Si-BPin + RCHO$$

$$(1.5 eq)$$

$$R = aryl, hexyl$$

$$PhMe_{2}SiO Me$$

$$PinB Me$$

$$[30-83\%]$$

$$syn/anti > 93:7$$

$$Pt(H_{2}C=CH_{2})(PPh_{3})_{2} (2 mol \%)$$

$$hexane, reflux, 24 h$$

$$R_{3}Si-Pt$$

$$Cis-crotyl-platinum$$

$$R_{3}Si-Pt$$

Ito. Y. J. Am. Chem. Soc. 1998. 120, 4248-4249.

Yields lower with aliphatic aldehydes

R He 
$$+$$
 EtO<sub>2</sub>C, B B B O CO<sub>2</sub>Et Pt(dba)<sub>2</sub> (2.5 mol %) PCy<sub>3</sub> (2.5

Morken, J. P. Org. Lett. 2003, 5, 2573-2575.

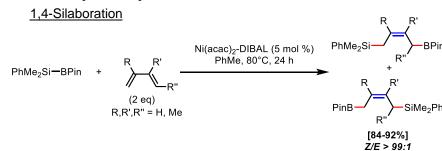
- PCy<sub>3</sub> ligand gave high (Z) ratio and conversion bulky monodentate ligand which opens coordination site of Pt after oxidative addition
- Increased size of R group gave higher enantioselectivity
- Electron deficiency of R lowered e.e. by 30%

Morken, J. P. J. Am. Chem. Soc. 2009, 131, 9134-9135.

- TADDOL-like phosphonite ligand used to induce enantioselectivity
- Cyclic, acyclic terminal dienes, 1,2,3-substitution tolerated
- Cis-dienes gave no reaction suggesting only dienes able to give S-cis conformation can undergo diborylation

- Oxaphospholane ligands also used to access same transformation
- 1,4-diborylation products with high enantioselectivity
- Similar scope as phosphonite ligands




Morken, J. P. Angew. Chem. Int. Ed. 2011, 50, 7906-7909.

### 1,2-Diborylation

Morken, J. P. Angew. Chem. Int. Ed. 2012, 51, 521-524.

- Chiral phosphonite ligands used to induce stereoselectivity
- Use of cis-dienes gave 1,2-selectivity
- · Scope includes aliphatic alkyl dienes, silyl protected alcohols, olefins
- · No endocyclic dienes

## **Nickel-Catalyzed Borylation**



Ito, Y. Org. Lett. 1999, 1, 1567-1569.

Asymmetrical dienes (isoprene) gave mixture of regioisomers

#### 1,4-Diborylation

Morken, J. P. Org. Lett. 2010, 12, 4348-4351.

- Cyclic dienes gave 30% lower yields than acyclic
- Styrene was unreactive under these conditions implying Ni<sup>0</sup> does not undergo oxidative addition of B<sub>2</sub>Pin<sub>2</sub> Proposed Mechanism:

$$(pin)B$$
 $(pin)B$ 
 $($ 

## 1,4-Borylative Coupling

$$\begin{array}{c} \text{Ni(cod)}_2 \text{ (5 mol \%)} \\ \text{PCy}_3 \text{ (10 mol \%)} \\ \text{PCy}_3 \text{ (10 mol \%)} \\ \text{B}_2 \text{pin}_2 \text{ (1.2 eq)} \\ \text{THF, rt, 6 h} \end{array} \\ \begin{array}{c} \text{B(pin)} \\ \text{O} \\ \text{R}'' \\ \text{R'} \end{array} \\ \text{B(pin)} \\ \text{R(pin)} \\ \text{R($$

Morken, J. P. J. Am. Chem. Soc. 2008, 130, 16140-16141.

- Complementary stereochemistry to platinum-catalyzed 1,2-diborylation followed by allylboration of aldehyde
- Scope includes aryl and vinyl aldehydes and simple terminal dienes

Nickel has been shown to be oxophilic and prefer to form the metallocycle over oxidative addition into B-B bond

Tamaru, J. Am. Chem. Soc. 2005, 127, 201-209.

### 1,2-Borylative Coupling

| ligand                             | 1,4:1,2 ratio | yield (%)          |
|------------------------------------|---------------|--------------------|
| none                               | >20:1         | 39                 |
| $PCy_3$                            | >20:1         | 69                 |
| PEt <sub>3</sub>                   | 1:2           | 34                 |
| P(SiMe <sub>3</sub> ) <sub>3</sub> | 1:12          | 45 <b>dr &gt;2</b> |

Morken, J. P. J. Am. Chem. Soc. 2010, 132, 7576-7577.

- Aryl, heteroaryl, and aliphatic aldehydes can be used
- Reports of P(SiMe)<sub>3</sub> as a ligand may act as an electron acceptor reductive elimination is faster than π-allyl isomerization

J. Organomet. Chem. 1984, 272, 29; J. Chem. Crystallogr. 2006, 36, 271.

# 3,4-Borylative Coupling

Morken. J. P. Org. Lett. 2011, 13, 5267-5269.

Borylative coupling of ketones gives 3,4-product

Model to Explain Regio- and Stereochemical Outcome

non-hindered carbonyls

Ar

Me

Ar

Ni

Me

Ar

Ni

Me

Ar

Ni

Me

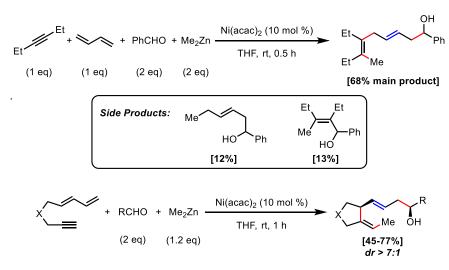
# 5. Other Acylfunctionalizations with Ni<sup>o</sup>

RCHO + Me<sub>2</sub>Zn + 
$$Ni(acac)_2 (10 \text{ mol } \%)$$
THF, rt, 2 h

Ni(acac)<sub>2</sub> (10 mol  $\%$ )
THF, rt, 2 h

OH

[40-99%]
[2.4 eq)


[47-99%]
[47-99%]

Tamaru, Y. Angew. Chem. Int. Ed. 1999, 38, 3386-3388; Tet. Lett. 2000, 41, 6789-6793.

Me<sub>3</sub>B can be used instead of Me<sub>2</sub>Zn

Hiyama, T. J. Am. Chem. Soc. 2000, 122, 9030-9031.

Asymmetrical dienes give mixture of regioisomers



Tamaru, Y. J. Am. Chem. Soc. 2005, 127, 201-209.

- X = C(CO<sub>2</sub>Et)<sub>2</sub>, NTs, O, C(Ph)<sub>2</sub>
- R = PhEt, Cy, tBu
- Ketones instead of aldehydes have been used, giving moderate yields